seurat结果转为scanpy可处理对象

作者:ahworld
链接:seurat结果转为scanpy可处理对象
来源:微信公众号seqyuan
著作权归作者所有,任何形式的转载都请联系作者。

怎样把seurat的对象转换成scanpy能够识别的数据格式呢,这一个是R S3对象,另一个是python的anndata对象。最初的想法是能不能把seurat对象的矩阵和分群信息导出到文件,再手动构建一个anndata对象,真要做的时候发现面临很多困难。

最终经过在google搜索,毫无意外的发现了同道中人,有相同需求的人在bioinformatics上提问Convert R RNA-seq data object to a Python object,通过查看这个页面提供的方案,我发现seurat官网提供了不同单细胞处理软件结果互通的转换方法。

seurat官网提供了seurat对象SingleCellExperimentloomAnnData三种单细胞数据格式相互转换的方法。目前seurat(version 3.1)不支持写入scanpy要求的H5AD文件,所以目前的解决方案是:

  1. Seurat对象转换为loom文件
  2. Scanpy读取loom文件转换为能够操作的anndata对象

要是实现上面的两个简单的步骤还需要安装一些R和python包,需要安装的有以下几个,如果已经安装了,忽略就好:

安装好以上包之后,在R中执行以下代码 ,实现第一步:Seurat对象转换为loom文件

#读入seurat处理后的rds文件
library(Seurat)
library(loomR)

sdata <- readRDS(file = "/Users/yuanzan/Desktop/tmp/seurat_project.rds")
# seurat对象转换为loop文件
sdata.loom <- as.loom(x = sdata, filename = "/Users/yuanzan/Desktop/tmp/sdata.loom", verbose = FALSE)
# Always remember to close loom files when done
sdata.loom$close_all()

接着在jupyter中执行以下代码 ,实现第二步:Scanpy读取loom文件转换为能够操作的anndata对象

import scanpy as sc
adata = sc.read_loom("/Users/yuanzan/Desktop/tmp/sdata.loom", sparse=True, cleanup=False, X_name='spliced', obs_names='CellID', var_names='Gene', dtype='float32')

我们再试一下用scanpy里的函数画marker gene堆叠小提琴图

marker_genes = ['Stfa1', 'Ngp', 'Ccl5', 'Ccl4', 'BC100530', 'Gzma', 'Gata2', 'Cd74']
ax = sc.pl.stacked_violin(adata, marker_genes, groupby='ClusterName', rotation=90)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容