注:练习一 ~ 四过于简单,略
练习五 - 数据读取及t.test检验
本练习主要做的是一个t.test,有两种导入数据方式
(1)当数据较少时可以直接赋值:
weight <- c(60,72,57,90,95,72)
height <- c(1.75,1.8,1.65,1.9,1.74,1.91)
然后计算它们的比率并查看:
ratio <- weight/height^2
head(ratio)
#[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630
t.test计算结果展示:
t.test(ratio)
结果如下:
One Sample t-test
data: ratio
t = 12.611, df = 5, p-value = 5.569e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
18.41734 27.84791
sample estimates:
mean of x
23.13262
.
(2)当数据较多时,就需要从外部读取进入数据文档了,一般用“txt”格式文档,导入文档需要注意的一点,也是前提:设置环境,这里需要用到函数setwd()
setwd("F:/XJAU//work/Advanced biostatistics-work/")
导入数据(数据自己在PPT上扣)
t.test.data <- read.table("t.test.txt",header = T)
如步骤(1)计算
attach(t.test.data)
ratio <- t.test.data$weight/t.test.data$height^2
t.test(ratio)
.
练习六 - 方差分析及箱线图绘制
导入数据
bac <- read.table("anova.data.txt",header = T)
将bac数据框中的type转换为因子(factor)
bac$type <- as.factor(bac$type)
单因素方差分析
ba.an <- aov(lm(day ~ type,data = bac))
#head(ba.an)
summary(ba.an)
绘制箱线图
boxplot(day ~ type,data = bac,col = "red")
如图
·
练习七 - 因子生成
注:该题直接照着PPT敲就行了,但是我敲好了就粘贴进来了
numeric <- c(100,200,400,600,800)
factor.numeric <- as.factor(numeric)
factor.numeric
.
练习八 - 条件筛选
1.创建一个2到50的向量
vectorl <- seq(from = 2,to = 50, by = 2)
head(vectorl)
2.选取第20个元素
vectorl[20]
3.选取第10,15,20个元素
vectorl[c(10,15,20)]
4.选取第10到20的元素
vectorl[10:20]
5.选取大于40的元素
vectorl[vectorl>40]
.
练习九 - 了解工作路径
查看当前环境
getwd()
将工作路径设置为:"d:/data/"
setwd("d:/data/")
.
练习十 - 运行脚本
注:此题较复杂,不宜展示,仅注释
此脚本为rate和impurity之间的回归分析
赋值数据
rate <- c(20,22,24,26,28,30,32,34,36,38,40,42)
impurity <- c(8.4,9.5,11.8,10.4,13.3,14.8,13.2,14.7,16.4,16.5,18.9,18.5)
绘制散点图
plot(impurity ~ rate)
回归分析
reg <- lm(impurity ~ rate)
abline(reg,col = "red")
summary(reg)
绘图如下:
.
练习十一 - 绘图练习
1. 直接粘贴练习十的脚本
2.回归分析及绘制散点图
plot(impurity ~ rate)
reg <- lm(impurity ~ rate)
添加回归直线
abline(reg,col = "red")
summary(reg)
结果如上图
.
练习十二 - 编写函数
编写一个可以计算两者平方和的临时函数
sqtest <- function(x,y)
{
z1 = x^2;
z2 = y^2;
z3 = z1 + z2;
z3
}
计算平方和
sqtest(3,4)
结果等于25
.
花有重开时,人无再少年