TensorFlow与android的人脸识别和车道路面识别

先看效果

                                              

                                                                            人体骨架识别

人脸识别
车道识别
车道线与车辆识别


                            因图片过大无法上传请上github上看效果



本项目使用的是Camera2的api

过段时间我还会陆续公布一些更好玩的模型

目前本Demo模型能识别出 抽烟 打电话 闭眼 睁眼TensorFlowObjectDetectionAPIModel 为检测规则画框TensorFlowImageClassifier2 为车道检测之后不规则绘制(因时间仓促 还没有进行绘图优化) 识别道路的测试方法请自行百度寻找图片或者视频都可以

TensorFlowImageClassifier3 是用来识别人体骨架的 这个模型是有特定输入和特定输出的 需要经过3层转换 才能使用 接下来准备上线道路障碍物识别...

Camera2BasicFragment4 这是一个用检测来识别车道和前车 里面增加了点逻辑来判断是否是车道偏离或者前车过近 具体做法是 如果检测出线则判断斜率k = (y2-y1)/(x2-x1)然后设定一个固定斜率来判断是否是车道偏离 如果是检测出前面的车辆中心点在横屏8分之2到8分之6的范围内则判断中心点居上距离大于一定范围则算前车过近 或者如果车的高度大于一定级别则算前车过近


另外: 有人私下问我本项目在他们的手机上跑起来卡顿严重 这是算力的问题,目前tensorFlow在移动设备上貌似不支持GPU,而CPU的浮点运算速度比较慢导致的 推荐使用华为P10 或者 骁龙845 635之类的U来跑跑看 一般P10的话 1能一秒4帧 2能1秒8帧 3能一秒1帧 4能一秒6帧左右 当然以上数据仅供产考



github:https://github.com/yuxitong/TensorFlowDemo

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容

  • 国家电网公司企业标准(Q/GDW)- 面向对象的用电信息数据交换协议 - 报批稿:20170802 前言: 排版 ...
    庭说阅读 10,846评论 6 13
  • 原文地址:http://augix.me/archives/5056欢迎关注Augix微信订阅号: 在第二次世界大...
    Majirefy阅读 2,838评论 2 7
  • 你对我很好,我渐渐喜欢上你,你吻了我,我做了你的男朋友,我越来越爱你了,你却冷淡的说了分手,在那之后你过得很好,似...
    s追青阅读 177评论 1 1
  • 疼在心头 伤在骨头 一切命运的嘱托都在风雨之后 泪眼在流 血丝滴透 无法诉说的绝情都是木作得舟 忘记拥有 忘...
    风月无疆阅读 268评论 0 1
  • 哈佛经典 哈佛经典(Harvard Classics)是一套五十一卷本的经典图书汇集,起源于哈佛大学第二任校长查尔...
    Jeremy_Anifacc阅读 288评论 0 0