PostgreSQL命令EXPLAIN ANALYZE
是日常工作中了解和优化SQL查询过程所用到的最强大工具,后接如SELECT ...
,UPDATE ...
或者DELETE ...
等SQL语句,命令执行后并不返回数据,而是输出查询计划,详细说明规划器通过何种方式来执行给定的SQL语句。
下面是从Postgres Using EXPLAIN提取的查询:
EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2
ORDER BY t1.fivethous;
它生成的查询计划:
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100 loops=1)
Sort Key: t1.fivethous
Sort Method: quicksort Memory: 77kB
-> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427 rows=100 loops=1)
Hash Cond: (t2.unique2 = t1.unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.007..2.583 rows=10000 loops=1)
-> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659 rows=100 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 28kB
-> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1)
Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100 loops=1)
Index Cond: (unique1 < 100)
Planning time: 0.194 ms
Execution time: 8.008 ms
Postgres构建了一个规划节点的树结构,以表示所采取的不同操作,其中root根和每个->
指向其中一个操作。在某些情况下,EXPLAIN ANALYZE
会提供除执行时间和行数之外的额外执行统计信息,例如上面例子中的Sort
及Hash
。除第一个没有->
的行之外的任何行都是诸如此类的信息,因此查询的结构是:
Sort
└── Hash Join
├── Seq Scan
└── Hash
└── Bitmap Heap Scan
└── Bitmap Index Scan
每个树分支代表子动作,从里到外以确定哪个是“第一个”发生(尽管同一级别的节点顺序可能不同)。
在tenk_unique1
索引上执行的第一个操作是Bitmap Index Scan
:
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100 loops=1)
Index Cond: (unique1 < 100)
这对应于SQL WHERE t1.unique1 < 100
。Postgres查找与条件unique1 < 100
匹配的行位置。此处不会返回行数据本身。成本估算(cost=0.00..5.04 rows=101 width=0)
意味着Postgres预期将“花费” 任意计算单位的 5.04 来找到这些行。0.00是此节点开始工作的成本(在这种情况下,即为查询的启动时间)。rows
是此索引扫描将返回的预估行数,width
是这些返回行的预估大小(以字节为单位)(0是因为这里只关心位置,而不是行数据的内容)。
因为使用了ANALYZE
选项运行EXPLAIN
,所以查询被实际执行并捕获了计时信息。(actual time=0.049..0.049 rows=100 loops=1)
表示索引扫描执行了1次(loops
值),结果返回了100行,实际时间是0 ..如果节点执行了多次,实际时间是每次迭代的平均值,可以将该值乘以循环次数以获取实际时间。基于成本的最小/最大时间的概念,范围值也可能会有所不同。通过这些值,我们可以为该查询生成一个成本比率,每个成本单位为0.049ms / 5.04单位≈0.01ms/单位。
索引扫描的结果将传递给Bitmap Heap Scan
操作。在此节点中,Postgres将获取别名为t1的tenk1表中行的位置,根据unique1 < 100
条件筛选并获取行。
-> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1)
Recheck Cond: (unique1 < 100)
当乘以之前计算的0.01值时,我们可以得到成本预期的大概时间(229.20 - 5.07)*0.01≈2.24ms,同时每行实际时间为除以4后的结果:0.526ms。这可能是因为成本估算是取的上限而不是取所有需读取的行,也或者因为Recheck条件总是生效。
和表顺序读取行(a Seq Scan
)相比,Bitmap Index Scan
和Bitmap Heap Scan
关联操作成本要昂贵得多,但是因为在这种情况下只需要访问相对较少的行,所以关联操作最终会变得更快。通过在获取行之前将行按照物理顺序排序来进一步加速,这会将单独获取的成本降到最低。节点名称中的“Bitmap”完成了排序操作。
表扫描的结果(tenk1表中满足unique1 < 100
条件的那些行)将在读取时被插入到内存的哈希表中。正如我们从成本中看到的那样,这根本不需要时间。
-> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659 rows=100 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 28kB
哈希节点包括散列桶(hash buckets)和批次数(batches)相关的信息,以及内存使用峰值情况。如果批次> 1,则还会包括未显示的磁盘使用信息。内存占用在100行* 244字节= 24.4 kB时是有意义的,它非常接近28kB,我们假定这是哈希键本身所占用的内存。
接下来,Postgres从别名为t2的tenk2表读取所有的10000行,并根据tenk1表行的Hash检查它们。散列连接意味着将一个表的行输入到内存中的散列(先前的操作中已构建),之后扫描另一个表的行,并根据散列表探测其值以进行匹配。在第二行可以看到“匹配”的条件,Hash Cond: (t2.unique2 = t1.unique2)
。请注意,因为查询是从tenk1和tenk2中选择所有值,所以在散列连接期间每行的宽度加倍。
-> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427 rows=100 loops=1)
Hash Cond: (t2.unique2 = t1.unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.007..2.583 rows=10000 loops=1)
现在已经收集了满足条件的所有行,可以对结果集进行排序Sort Key: t1.fivethous
。
Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100 loops=1)
Sort Key: t1.fivethous
Sort Method: quicksort Memory: 77kB
Sort节点包含排序算法quicksort
相关的信息 ,排序是在内存中还是在磁盘上完成(这将极大地影响速度),以及排序所需的内存/磁盘空间量。
熟悉如何解读查询计划会非常有助于优化查询。例如,Seq Scan节点通常表示添加索引的必要性,读取速度可能要快得多。
翻译并编辑,原文出处:https://thoughtbot.com/blog/reading-an-explain-analyze-query-plan