数据结构_图_最短路径

github地址:
https://github.com/arkulo56/thought/blob/master/software/dataStruct/%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84_%E5%9B%BE_%E6%9C%80%E7%9F%AD%E8%B7%AF%E5%BE%84.md

图_最短路径(个人认为应该叫最佳路径)

最短路径其实说的是权重,请仔细理解权重的意义。在实际应用中,权重可以是消耗的时间、金钱、距离甚至是概率等等,我们求最短路径,也就是求这些权重之和的最小(或最大)值


北京地铁复杂的线路图,从育新小区到公益西桥有很多条线路可以选择,从时间、距离、还有车费等不同的角度考虑,可能获得的最佳线路都不一样~~~

迪杰斯特拉(Dijkstra)算法

(两个顶点之间的最短路径)

按照路径长度递增的产生最短路径的算法,也就是说不是一次性算出两个定点之间的最短距离,而是通过计算每个中间顶点的最短距离,最后推导出要求的顶点最短距离

  1. 5~12行是初始化阶段,final一维数组值均为0,D数组记录所有顶点到v0的最短路径值,当前是{65535,1,5,65535,65535,65535,65535,65535,65535},p数组全为0,表示目前还没有找到任意一个顶点的最短路径
  2. 13行是一个主循环,每循环一次求得v0与一个顶点的最短路径,也就是让一个顶点的final值为1
  3. 16~24行的循环,先令min为65535,通过w循环,与D[w]比较,找到目前最小的min和k值。当前是:D[1]的值最小,因为在第一次初始化的时候,v0连接的就两条边,v1和v2,如果是第二次循环,那就是D[2]
  4. 25~32行,是在修正之前已经判定的v0和某个点的最短距离,例如:在初始化的时候v0到v2的最短距离是5,但是第一次循环完成之后,发现v0->v1=min=1,v1->v2=3,因此v0->v1->v2=min+G.matirx[v1][v2]=4,这个值是小于D[2]=5的

佛洛伊德(floyd)算法

能计算出北京地铁所有站与站之间在时间上的最佳路径,那所有上班族就知道该怎么换乘才最省时间!!!

(所有顶点到其他顶点之间的最短距离)

[v][w]=min{

[v][w],
[v][k]+
[k][w]}

上面这个公式的含义就是:我们要判断所有顶点经过k顶点到达另一个顶点的最短路径。例如:v->w > v->k->w,整个算法就是根据这个简单的逻辑推导出所有顶点到其他顶点的最短路径,看看下面的图:

代码

该算法用一个三层的循环遍历了所有的顶点,并计算出了顶点与顶点之间的最短距离

其中: k代表中转顶点、v代表起始点、w代表结束顶点

可以通过下面的图形理解k,v,w是怎么运作的

这是v0作为中转顶点时,其他所有顶点通过它到结束点的最短路径,发现不需要更新

这是v1作为中转顶点,可以看出,例如:原来v0->v2=5,而现在v0->v1->v2=1+3=4,因此我们就需要改变v0->v2的最短路径为4,其他的同理。

就如同上面两步一样,循环进行直到所有顶点被处理一边,最后结束得到的就是所有顶点到顶点之间的最短路径

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容