Java垃圾回收机制算法分析

引用计数算法

当new一个对象,这个对象就分配了一个引用计数器且计数设为1,当这个对象被其他变量引用时,对象引用计数+1;当一个对象的引用超过生存期或者被设置一个新的值时,这个对象的引用计数减1。当对象的引用计数变为0时,就标记为可回收,通知GC收集器回收。

优点
引用计数算法的实现简单,判断效率也很高
缺点
对象之间相互循环引用的问题,导致对象无法被GC回收

再来看下循环引用事例及解决办法

public static void main(String[] args) {  
        GcObject objA = new GcObject();  
        GcObject objB = new GcObject();  
        objA.instance = objB;  
        objB.instance = objA;  
        objA = null;  
        objB = null;  
    }  

class GcObject{

public Object instance=null;
}

第2行代码 objA引用计数为1
第3行代码 objB 引用计数为1
第4行代码 objB应用计数为2
第5行代码 objA引用计数为2
第6行代码 objA引用计数减1,引用计数为1
第7行代码 objB引用计数减1,引用计数为1

到此objA,objB引用计数都不为0,实例分配的内存都不能释放,造成内存泄漏。

解决的办法
可以通过弱引用解决循环引用的问题,弱引用是不会使引用计数+1的,这种特殊的弱引用被称为归零弱引用,这里假设objA弱引用的话,第5行代码后 objA引用计数仍然为1,第6行代码后 objA引用计数为0,objA被GC回收后objB引用计数为1,第7行代码后objB引用计数为0,被GC回收。

可达性算法

通过一系列的被称为“gc roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链,当一个对象到“gc roots”没有任何引用链相连时,则证明此对象是不可用的。

可以作为“gc roots”的对象
(1)虚拟机栈(栈针中的局部变量表)中引用的对象
(2)方法区中类静态属性引用的对象。
(3)方法区中常量引用的对象
(4)本地方法栈中JNI引用的对象。

22f72b18415405c3e0207925a8de74fa_b.png

从上图可以reference1,reference2,reference3都是GC Roots,可以看出:
reference1->对象实例1
reference2->对象实例2
reference3->对象实例4
reference3->对象实例4->对象实例6
可以得出对象实例1,2,4,6都具有GC Roots可达性,不能被GC回收的对象,而对于对象实例3,5直接虽然连通,但并没有任何一个GC Roots与之连通,这便是GC Roots不可达对象,GC回收的对象。

复制算法

原理:它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

优点:不会出现碎片问题。
缺点:暂停整个应用,需要2倍的内存空间。

标记 -清除算法

原理:对于“活”的对象,一定可以追溯到其存活在堆栈、静态存储区之中的引用。这个引用链条可能会穿过数个对象层次。第一阶段:从GC roots开始遍历所有的引用,对有活的对象进行标记。第二阶段:对堆进行遍历,把未标记的对象进行清除。这个解决了循环引用的问题。
缺点:1、暂停整个应用;2、会产生内存碎片。

记-压缩算法

原理:第一阶段标记活的对象,第二阶段把为标记的对象压缩到堆的其中一块,按顺序放。
优点:1、避免标记扫描的碎片问题;2、避免停止复制的空间问题。

分代收集算法

原理:基于对象生命周期分析得出的垃圾回收算法。把对象分为年轻代、年老代、持久代,对不同的生命周期使用不同的算法进行回收。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容