分布式全局唯一ID生成策略

本文到这里就结束了,喜欢的朋友可以帮忙转发和关注一下,感谢支持!

为了感谢支持我的朋友!整理了一份Java高级架构资料、Spring源码分析、Dubbo、Redis、Netty、zookeeper、Spring cloud、分布式等资。

本号专注Java源码分析。喜欢底层源码的朋友可以来交流探讨。交流群:818491202 验证:33

的需求,它用于唯一标识一个业务对象、一个资源、或者一个消息等等。在数据库中,唯一ID一般是用来做为一个数据的主键。看过前面介绍MySQL索引原理的文章的朋友应该知道,主键对于数据库的重要性不言而喻。

在单机场景下,要得到一个全局唯一的ID是非常容易的,你可以使用数据库的自增功能

但是如果在分布式的场景下,想要构建构建一个全局唯一的ID就有些不一样。因为分布式系统一般是高并发场景,那自然不适合使用单机数据库的自增功能了。如果你的技术选型恰好是MySQL这样的“非分布式数据库”,那就得参考一下业界常见的分布式全局唯一ID生成策略了。

UUID

UUID全称是Universally Unique Identifier,翻译过来叫通用唯一识别码。标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:9628f6e9-70ca-45aa-9f7c-77afe0d26e05,到目前为止业界一共有5种方式生成UUID,详情见IETF发布的UUID规范《A Universally Unique IDentifier (UUID) URN Namespace》,分别称为UUID的5个版本。

在JDK自带的UUID类可以产生版本3和版本4的UUID。所以这里简单介绍一下版本3和版本4的UUID的生成方式。

UUID版本3:通过计算name和namespace的MD5散列值得到。

UUID版本4:根据随机数,或者伪随机数生成UUID。这种UUID产生重复的概率是可以计算出来的,但是重复的可能性可以忽略不计,因此该版本也是被经常使用的版本。

也有在线生成UUID的网站,如果你的项目上用到了UUID,可以用来生成临时的测试数据。www.uuidgenerator.net/

UUID的优势是实现起来很简单,用JDK原生的API即可得到。劣势是与基于b-Tree引擎的数据库的主键索引策略不太符合,不适合作为高性能需求的场景下的数据库主键。

基于Redis实现

都用分布式了,多半要上个缓存。用缓存的话,可能会使用Redis。Redis的INCR函数在单机上是原子操作,可以保证唯一且递增。

单机Redis可能无法支撑高并发。而如果使用Redis集群,如何保证ID的唯一性呢?可以使用步长的方式。比如有5个Redis节点组成的集群,它们生成的ID分别为:

A: 1,6,11,16,21

B: 2,7,12,17,22

C: 3,8,13,18,23

D: 4,9,14,19,24

E: 5,10,15,20,25

类snowflake方案

Twitter利用Zookeeper实现了一个全局ID生成的服务snowflake。其生成ID的数据结构如下图所示:

共64位,正好对应Java中的long型,第一个符号位不用,然后41位用于表示时间戳。后续10位用来表示节点的id,如果是多机房节点,可以划分前5位用来表示机房id,后5位用来表示每个机房下的机器的id。最后12位用来表示序列号,这样可以做到同一毫秒,同一机器生成多个id,12位算下来最多支持4096个。

这里的时间戳并不是当前时间的Time Stamp,而是当前时间相对于起始时间的差值。如果基于毫秒来计算的话,41位大约可以用69年。

snowflake算法有许多变种。可以根据自己的实际情况调整位数的分配,比如时间戳占42位,机器id占9位。42位时间戳就可以用138年等。

百度的UidGenerator和美团的Leaf都是基于snowflake的变种。

snowflake是一种比较好的生成ID方式,保证全局唯一,且支持高并发。而且是long类型的,趋势递增,可以用于数据库主键。还可以根据时间来排序。

但也有其缺点,就是强依赖服务器的时钟,如果服务器的时钟出现回拨(比如闰秒或者NTP同步),就会导致ID重复。

美团的Leaf解决了时钟回拨的问题,具体流程如下图,可以了解一下:

其他方式

当然,还有一些其他的ID生成方案,比如:

滴滴:时间+起点编号+车牌号

淘宝订单:时间戳+用户ID

其他电商:时间戳+下单渠道+用户ID,有的会加上订单第一个商品的ID。

MongoDB的ID:也算是类snowflake的一种。通过“时间+机器码+pid+inc”共12个字节,4+3+2+3的方式最终标识成一个24长度的十六进制字符。

总结

如果不用于数据库主键,建议直接用UUID。

如果想要用来做数据库主键,又没有使用分布式数据库(比如TiDB、MongoDB等),可以考虑使用snowflake算法,建议使用美团的Leaf。

数据库中间件sharding-jdbc的分布式ID采用twitter开源的snowflake算法,不需要依赖任何第三方组件,这样其扩展性和维护性得到最大的简化;但是snowflake算法的缺陷(强依赖时间,如果时钟回拨,就会生成重复的ID),sharding-jdbc没有给出解决方案,如果用户想要强化,需要自行扩展。

关注公众号领资料

搜索公众号【Java耕耘者】,回复【Java】,即可获取大量优质电子书和一份Java高级架构资料、Spring源码分析、Dubbo、Redis、Netty、zookeeper、Spring cloud、分布式等视频资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容