欢迎关注我的CSDN: https://blog.csdn.net/bingque6535
1. 问题:
求数据集中任意两人之间的共同好友
2. 数据集
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J,K
说明:
A:B,C,D,F,E,O 表示 B,C,D,F,E,O 为A的好友
3. 思路
- 首先求出你是那些人的好友
- 然后将认识自己的好友, 进行两两配对(因为他们都认识你, 所以肯定有共同好友)
- 然后得到了数据集中所有有共同好友的关系集合
4. 代码
-
Driver端
package com.hjf.mr.friend; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * @author Jiang锋时刻 * @create 2020-05-20 0:01 * 第一阶段: 生成数据集中所有有共同好友关系的key-value键值对 */ public class FriendsDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); // ---------------------第一阶段--------------------- Job job1 = Job.getInstance(conf); job1.setJarByClass(FriendsDriver.class); // 指定第一阶段的Mapper端和Reducer端的类 job1.setMapperClass(FriendsMapper1.class); job1.setReducerClass(FriendsReducer1.class); job1.setMapOutputKeyClass(Text.class); job1.setMapOutputValueClass(Text.class); job1.setOutputKeyClass(Text.class); job1.setOutputValueClass(Text.class); Path inputPath = new Path("./Data/friends.txt"); Path outputPath = new Path("./Data/output1"); FileSystem fs = FileSystem.get(conf); if (fs.exists(outputPath)) { fs.delete(outputPath, true); } FileInputFormat.setInputPaths(job1, inputPath); FileOutputFormat.setOutputPath(job1, outputPath); job1.waitForCompletion(true); // ---------------------第一阶段--------------------- Job job2 = Job.getInstance(conf); job2.setJarByClass(FriendsDriver.class); // 指定第二阶段的Mapper端和Reducer端的类 job2.setMapperClass(FriendsMapper2.class); job2.setReducerClass(FriendsReducer2.class); job2.setMapOutputKeyClass(Text.class); job2.setMapOutputValueClass(Text.class); job2.setOutputKeyClass(Text.class); job2.setOutputValueClass(Text.class); // 第一阶段的输出路径是第二阶段的输入路径 Path inputPath2 = new Path("./Data/output1"); Path outputPath2 = new Path("./Data/output2"); if (fs.exists(outputPath2)) { fs.delete(outputPath2, true); } FileInputFormat.setInputPaths(job2, inputPath2); FileOutputFormat.setOutputPath(job2, outputPath2); job2.waitForCompletion(true); } }
-
Mapper1 端
package com.hjf.mr.friend; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; /** * @author Jiang锋时刻 * @create 2020-05-20 0:03 * 将数据集中的"自己:自己认识的人" --> "认识自己的人:自己" * 因为认识你的人之间都有共同好友 */ public class FriendsMapper1 extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] split = value.toString().split(":"); Text name = new Text(split[0]); String[] friends = split[1].split(","); for (String friend: friends) { context.write(new Text(friend), name); } } }
-
Reducer1 端
package com.hjf.mr.friend; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; /** * @author Jiang锋时刻 * @create 2020-05-20 0:04 * 将认识你的人拼接成一个字符串 */ public class FriendsReducer1 extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text value: values){ sb.append(value.toString()).append(","); } sb.deleteCharAt(sb.length() - 1); // context.write(key, new Text(sb.toString())); } }
-
Mapper2 端
package com.hjf.mr.friend; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; import java.util.Arrays; /** * @author Jiang锋时刻 * @create 2020-05-20 1:03 * 将认识自己的人两两进行组合, 拼接成有关系字段[他们之间有共同好友] */ public class FriendsMapper2 extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] split = value.toString().split("\t"); Text name = new Text(split[0]); String[] friends = split[1].split(","); // 好友姓名进行排序, 避免出现重复情况: A-B 和 B-A是同一种情况 Arrays.sort(friends); // 本人任意两个朋友之间都存在朋友关系 for (int i = 0; i < friends.length - 1; i++) { for (int j = i + 1; j < friends.length; j++) { Text relation = new Text(friends[i] + "-" + friends[j] + ":"); context.write(relation, name); } } } }
-
Reducer2端
package com.hjf.mr.friend; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; import java.util.HashSet; /** * @author Jiang锋时刻 * @create 2020-05-20 1:03 */ public class FriendsReducer2 extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); HashSet<String> sets = new HashSet<>(); for (Text value: values) { if (!sets.contains(value.toString())) { sets.add(value.toString()); } } for (String set: sets) { sb.append(set).append(","); } sb.deleteCharAt(sb.length() - 1); context.write(key, new Text(sb.toString())); } }
欢迎关注我的CSDN: https://blog.csdn.net/bingque6535