分析类别:
首先需要知道自己报告的类别,如你需要做 昨天的交易分析,那就是描述性分析。你需要找到订单量下降的原因,就是解释性分析。你需要对下个月的销售做提前采购计划,就是预测性分析。针对一个未知的事情,比如你们产品是否需要增加某个功能模块,做探索研究,就是探索性分析。
分析流程:
数据分析一般都是一次性的,一般都是专题分析报告。提需求的方式,是我们有一个问题需要解决(解释性,探索性,描述性,预测性)。而不是提的需求是,我需要一个什么样格式的数据,你们计算好了发给我一下,甚至直接给我做一个ppt和报表。客户说 自己想买一瓶可乐,其实他只是口渴,我们只需要给他点喝的就行。
分析报告类型:
数据分析报告是数据分析过程和思路的最后呈现,得出分析的结论并给出解决方案。其本质上是在写一篇有理有据,逻辑性强的议论文。针对不同的分析目的选择不同的报告形式和内容。
报告结构:
一份数据分析报告由以下几个部分组成,一般都是总分总的格式:
标题:
标题是一份报告的文眼,是全篇报告最浓缩的精华。好的标题让读者能毫无偏差地理解这篇分析报告的主要目的,有时可以直接在标题中加入部分或者关键性结论达到直达文意的效果。
在标题的命名过程中,现在有一份关于数据分析师招聘和薪酬方面的一份报告,你可以:
1. 直接在标题中放上报告的结论,例如《数据分析师在人工智能大环境下需求直线上升》
2. 提出分析报告的研究问题,例如《数据分析师的职业规划在哪里》
3. 中规中矩地写上研究的主题,例如《数据分析师的招聘研究》
目录:
提现数据分析报告的整体架构
前言
前言部分就和写论文时候的Abstract类似:
1. 要写出做这次分析报告的目的和背景
2. 略微阐述现状或者存在的问题
3. 通过这次分析需要解决什么问题
4. 运用了什么分析思路,分析方法和模型
5. 给出总结性的结论或者效果
6. 给出数据来源
正文:
逻辑性强
现实状况的给出和论证一定要严谨合理,逻辑性强。这正是数据分析师存在的意义。
架构清晰
分析报告的架构体现了分析师的分析思路的框架,一定要显而易见,符合常识。思路最好不要出现跳跃的地方,以免出现阅读障碍,令读者不知所云。一步一步得出结论,给出观点。
结论明确
数据的结论一定是要从数据中得出来,要严谨的切合数据分析的主题,最好一个分析模块只给出一个最直接最和主题关联的分析结论。一个特征当然可以从多个角度提取出多个观点和结论,但是一定要选择和主题相关性最强的那个,不然大量的低相关信息会很容易打乱读者的思路。
可视化
人都是视觉动物,一图胜千言。在数据报告中需要大量地使用各种图表而非文字,图表能够一步到位的将数据呈现在读者面前,大部分时候无需做多余的解释。
术语
根据读者的不同决定是否要解释报告中的分析方法和术语。
分析结论:
看你的分析目的是什么,才看需要给出建议不。