深度学习框架caffe在ubuntu上无GUP编译环境详细配置

最近公司打算做人工智能方面,我这个什么也不懂的菜鸟就被推出来扛起大旗,在网上随便找了个贴子来安装caffe,没想到这一安装步步为坑,太多泪了

现在把详细的踩坑过程记录一下,以供后来人参考:

配置环境:Ubuntu14.04

1、先下载caffe源码,在https://github.com/BVLC/caffe直接下载还是用wget下载都可以。

2、解压后会看到里面既有Cmakelist文件和Makefile,Makefile.config用make直接编译和cmake都是可以的,两种方式我都测试了,下面讲一下直接make的方式。

3、先做准备工作安装依赖库,打开caffe的官方安装文档http://caffe.berkeleyvision.org/install_apt.html,其实直接用官方的东西是最好的,还是少搜贴子了,

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

由于是Ubuntu14.04的还要加几个包sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

4、注意注意 这里安装完的opencv版本应该是2.7的,很关键后面会用到。要以用 pkg-config --modversion opencv查看一下版本

5、准备Makefile的配置文件,目录下本身就有个例子我们改改就可以了cp -rf Makefile.config.example Makefile.config,打开 Makefile.config

打开这个选项,只用CPU编译,由于先前安了好久的cuda都装不上,可能是我的机器显卡有问题,都快崩溃了,后来果断放弃改用cpu

6、有的地方好像还用atlas我也忘了,反正先装上吧sudo apt-get install libatlas-base-dev 

7、然后直接make -j4

8、由于以前自己还安装了opencv3.6的库,这下出了很大的麻烦,caffe默认去找了3.6的库,这样就会出现找不到libIlmImf.so的情况,新的opencv3.6是不带so文件的,有三种方法可以解决

     1.将新版本卸载,2.采用opencv版本切换这个可以网上搜一下很用弄,3.将旧版本的库复制到新版本的目录下,旧版本是/usr/lib/下,新版本是在/usr/local/lib下

9、这次再重新编译有的会出现

[cpp] view plain copy

undefined reference to `cv::imencode(cv::String const&, cv::_InputArray const&, std::vector >&, std::vector > const&)'  

.build_release/lib/libcaffe.so: undefined reference to `cv::imdecode(cv::_InputArrayconst&, int)'  

.build_release/lib/libcaffe.so: undefined reference to `cv::imread(cv::Stringconst&, int)  

   这种情况应该是库没有链接到,这个是采用网上找的方法,将opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs加到LIBRARIES下,

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs

记得要make clean 或者rm -rf ./build/*,然后再make

10、顺利编译成功,有点小兴奋唉。。。

11、进入cd build/tools/,下面应该有个caffe的可执行文件,运行一下试试会弹出这么一坨,基本已经安装成功了。

12、因为下面的例子一般都是python的还需要安装一下python库,

sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

13、跑一个小例子,满足一下好奇心,http://caffe.berkeleyvision.org/model_zoo.html这上面是有很多牛人的模型,我们下载一个测试一下。

14、我们测试一下识别图片的小例子吧,回到根目录下有个scripts目录,

./scripts/download_model_binary.py models/bvlc_reference_caffenet

15、接下来下载对应的标签文件

./data/ilsvrc12/get_ilsvrc_aux.sh

16、在网上随便下载了图片,放在了examples/images/dada.jpg

运行模型进行检测

./build/examples/cpp_classification/classification.bin \

  models/bvlc_reference_caffenet/deploy.prototxt \

  models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \

  data/ilsvrc12/imagenet_mean.binaryproto \

  data/ilsvrc12/synset_words.txt \

  examples/images/dada.jpg

看见输出结果显示

88%的概率是非洲象,这个区分的还是很细的,自己也可以下载一下大牛的模型自己试试哦,后面也会传一些自己训练的模型上来

有什么不明白的给我留言。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容