个性化推荐算法

随着算法的普及,大量的产品有了个性化推荐的功能,这也成为内容类产品的标配。个性化定制化逐渐成为了互联网思维的新补充,被提升到了越来越重要的地位。算法推荐经过了很长一段时间的发展,才逐渐达到能给用户惊喜的阶段。比如在电商领域,推荐算法可以挖掘用户潜在购买需求,缩短用户选取商品的时间,提升用户的购物体验;在新闻或段视频领域,推荐算法可以推送用户喜欢的内容,提高用户的阅读效率,减少用户选择内容的时间,也增加了用户在产品上的停留时长。

算法应用阶段

内容类产品发展初期,推荐算法一般为“热度算法”,就是系统把热点内容优先推荐送给用户,完成热点内容的高阅读率。在积累了一定的用户数据后,会发现用户阅读内容过于集中于热点信息,长尾信息中的优质资源往往被忽略,造成资源浪费。“千人一面”的状况已不是一个优质的解决方案,所以算法逐渐演变为“个性化推荐”,也就是协同过滤的方法论支撑下的一种算法。协同过滤能很好的根据用户的喜好,推荐匹配的内容,减少资源浪费,增加用户使用的友好体验。真正做到“千人千面”。

推荐算法的信息来源

第三方数据

一个新系统在初期没有数据积累的情况下,可与第三方合作,互授部分信息共享。比如,很多系统支持微信登陆,这时候可以获取客户的微信信息,生活地点,部分生活习惯等。同时会获取用户的社交信息,共同好友越多表明圈子越相似,可以推荐更多相似的内容。

用户行为数据

记录用户在系统内的使用习惯,可以准确的描述单个用户的行为特征,爱好特征等有效的信息,系统根据提取出的分析结果,将内容与之匹配,完成更精准的推荐。如,某用户经常浏览体育信息,系统将对应推荐更多体育相关的咨询,省去用户搜索筛选的时间。

基于生活习惯

基于生活习惯,生活常识的推荐,往往也可以作为内置的一个信息来源途径。比如,外卖的app推荐用户的餐厅,一般默认是位置优先,就近推荐,如果是快中午的时间段使用,系统默认推荐午餐,其次是晚餐。靠生活常识作出的系统算法,可以更符合人类的习惯,给用户更好的体验。

热度算法

热度算法简单的说就是把最核心的内容优先推荐,用新闻举例,每一条新闻都具有实效性,随着时间的推移,该条新闻的关注度降低,关注点被新的热点新闻取代。量化以上的过程,把各个影响因素设定为变量,会得出以下的公式:

新闻热度=初始热度分+用户交互热度分-衰减热度分

初始热度分为新闻产生时,系统对新闻主体的预判热度值。预判的分值一般为以下两种模式,一种情况,按照新闻类别的不同,娱乐新闻大于财经新闻,大于国际新闻,大于文化新闻等等系统的预设,依次给出不同的初始热度分;另一种情况,系统预置热词词库,用新闻的关键词和词库的去匹配,匹配度高的,初始热度分高。

用户的交互热度分也是一个变量,先要明确用的哪些行为会影响新闻热度,然后对这些行为量化,加权或打分等方式。例如,网易云音乐,用户的听歌,重复循环,收藏,评论,分享等行为,系统为每一种行为打分,求和后得出用户交互的热度分:

用户交互热度分=听歌X10+循环X5+收藏X10+评论X5+分享X3

此公式还可以继续细化,每一种操作的分值也可以作为变量,在产品前期时,传播产品为主要任务,所以分享的加权要大一些,随着网易云的发展,社区的概念逐渐强化,评论区互动的加权会加大,所以评论的分值会增加,系统随时调整分数加权,得出更准确的用户交互的影响值。

衰减热度分是一个随时间变化而变化的数值,往往是一个函数的表达。用新闻举例,新闻的热度会随着时间的推移而衰减,并且趋势是越来越快,人们在接受新的热点后,迅速忘记“旧闻”,直至热度趋近于零。根据理论数据,构建函数,准确的表达衰减分值。

还有很多其他的影响因素,比如传播次数,传播层数,停留时长等等,都会影响热度值,要想更精准的表达,就需要把涉及到的因素都作为变量,不断完善算法,才能更精准的完成推荐。

个性化推荐算法

随着用户量的增加,产品日活的增加,用户也不能仅限于千人一面热点阅读的模式中,个性化推荐在此时显得尤为重要。个性化推荐有两种常见的解决方案,一种是基于内容的推荐算法,推荐内容往往是根据用户的使用习惯得来,较为精准;另一种是基于用户的协同推荐算法,系统会根据以往使用内容,为用户建模,然后根据群体中个体的使用习惯,推荐更多超预期的内容,达到预测推荐的效果。

基于内容的推荐算法-预期内

基于内容的推荐算法,靠收集用户的使用习惯,进而推荐相关的内容。系统使用分词库匹配、关键词匹配等等方式,达到内容的匹配,做到内容的精确划分。比如,用户浏览了某部科幻电影,系统就会按照该电影所对应的标签,如科幻,然后系统推荐相同标签的影片给用户。

这样的推荐方案,确定性强,推荐的内容都是根据用户的历史来确定,不能挖掘用户的潜在需求。

基于用户的协同推荐-超预期

做到精准推荐后,系统会继续挖掘更潜在的推荐需求,给用户超预期的推荐体验。这就到了基于用户协同推荐的阶段。简单的说,这种算法是增加了用户建模的环节,将同标签的用户群分,对比群体中单个个体的特征,默认这种特征为这类人的潜在特征,再将此特征内容推荐给同标签的用户,达到超预期的推荐效果。

比如,某用户购买了一个苹果手机,系统会将此用户归类为果粉,系统识别出很多果粉除了买苹果的商品,还会购买小米作为备用机,这个特征会被系统识别为潜在需求,推荐给果粉,减少果粉选择备用机的时间。

这样的推荐算法,不仅能完成精准的推荐,还能给用户小惊喜,让系统“有温度”。但是这样的推荐方式,往往需要积累了大量用户资料为基础,才可以精确的完成。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,519评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,842评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,544评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,742评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,646评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,027评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,513评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,169评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,324评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,268评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,299评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,996评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,591评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,667评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,911评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,288评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,871评论 2 341

推荐阅读更多精彩内容