mpi4py 中的全规约操作

上一篇中我们介绍了 mpi4py 中的全收集操作方法,下面我们将介绍全规约操作。

对组内通信子上的全规约操作,组内所有进程都作为根执行一次规约操作,操作完毕后所有进程接收缓冲区的数据均相同。这个操作等价于以某个进程作为根首先进行一次规约操作,然后执行一次广播操作,最后每个进程都得到相同的结果。

对组间通信子上的全规约操作,其关联的两个组 group A 和 group B 都要执行该方法调用,该操作使得 group A 中进程提供的规约结果将保存到 group B 的各进程中,反之亦然。

方法接口

mpi4py 中的全规约操作的方法(MPI.Comm 类的方法)接口为:

allreduce(self, sendobj, op=SUM)
Allreduce(self, sendbuf, recvbuf, Op op=SUM)

这些方法的参数与规约操作对应方法的参数类似,不同的是对全规约操作没有了 root 参数。

对组内通信子对象的 Allreduce,可以将其 sendbuf 参数设置成 MPI.IN_PLACE,此时各进程将从自己的接收缓冲区中提取数据,经过规约操作后,将结果替换接收缓冲区中原来的内容。

例程

下面给出全规约操作的使用例程。

# allreduce.py

"""
Demonstrates the usage of allreduce, Allreduce.

Run this with 4 processes like:
$ mpiexec -n 4 python allreduce.py
"""

import numpy as np
from mpi4py import MPI


comm = MPI.COMM_WORLD
rank = comm.Get_rank()

# ------------------------------------------------------------------------------
# reduce generic object from each process by using allreduce
if rank == 0:
    send_obj = 0.5
elif rank == 1:
    send_obj = 2.5
elif rank == 2:
    send_obj = 3.5
else:
    send_obj = 1.5

# reduce by SUM: 0.5 + 2.5 + 3.5 + 1.5 = 8.0
recv_obj = comm.allreduce(send_obj, op=MPI.SUM)
print 'allreduce by SUM: rank %d has %s' % (rank, recv_obj)
# reduce by MAX: max(0.5, 2.5, 3.5, 1.5) = 3.5
recv_obj = comm.allreduce(send_obj, op=MPI.MAX)
print 'allreduce by MAX: rank %d has %s' % (rank, recv_obj)


# ------------------------------------------------------------------------------
# reduce numpy arrays from each process by using Allreduce
send_buf = np.array([0, 1], dtype='i') + 2 * rank
recv_buf = np.empty(2, dtype='i')

# Reduce by SUM: [0, 1] + [2, 3] + [4, 5] + [6, 7] = [12, 16]
comm.Allreduce(send_buf, recv_buf, op=MPI.SUM)
print 'Allreduce by SUM: rank %d has %s' % (rank, recv_buf)


# ------------------------------------------------------------------------------
# reduce numpy arrays from each process by using Allreduce with MPI.IN_PLACE
recv_buf = np.array([0, 1], dtype='i') + 2 * rank

# Reduce by SUM with MPI.IN_PLACE: [0, 1] + [2, 3] + [5, 6] + [6, 7] = [12, 16]
# recv_buf used as both send buffer and receive buffer
comm.Allreduce(MPI.IN_PLACE, recv_buf, op=MPI.SUM)
print 'Allreduce by SUM with MPI.IN_PLACE: rank %d has %s' % (rank, recv_buf)

运行结果如下:

$ mpiexec -n 4 python allreduce.py
allreduce by SUM: rank 2 has 8.0
allreduce by SUM: rank 0 has 8.0
allreduce by SUM: rank 1 has 8.0
allreduce by SUM: rank 3 has 8.0
allreduce by MAX: rank 3 has 3.5
allreduce by MAX: rank 2 has 3.5
allreduce by MAX: rank 0 has 3.5
Allreduce by SUM: rank 0 has [12 16]
allreduce by MAX: rank 1 has 3.5
Allreduce by SUM: rank 1 has [12 16]
Allreduce by SUM with MPI.IN_PLACE: rank 0 has [12 16]
Allreduce by SUM: rank 3 has [12 16]
Allreduce by SUM with MPI.IN_PLACE: rank 3 has [12 16]
Allreduce by SUM: rank 2 has [12 16]
Allreduce by SUM with MPI.IN_PLACE: rank 2 has [12 16]
Allreduce by SUM with MPI.IN_PLACE: rank 1 has [12 16]

以上我们介绍了 mpi4py 中的全规约操作方法,在下一篇中我们将介绍规约发散操作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,378评论 25 707
  • 在上一篇中我们介绍了 mpi4py 中的收集操作方法,下面我们将介绍规约操作。 对组内通信子上的规约操作,该操作对...
    自可乐阅读 2,915评论 1 1
  • 前一阵,大家都在朋友圈晒出了自己的十八岁,十八岁的自己多么清纯,而我,对于我的十八岁,只是回忆了一下,就立即回过神...
    肉肉w阅读 194评论 0 2
  • 愉快的周二又过去了,到了晚上和简书见面的时刻。周二已过就到周三了,也挺快的。今天在回家的路上,想了想去支教的事情,...
    淡定的懒懒阅读 123评论 0 0
  • 我是一个很念旧的人,比如,就买菜来说,我在哪家店买习惯了,以后就总爱在那家店里买,基本上不会换第二家了,除非,我要...
    心有所愿阅读 522评论 2 2