展示一个神经元如何学习线性函数
import tensorflow as tf
import numpy as np
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
#生成测试数据
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
#声明W、b变量,一个神经元,W随机初始化,-1.0到1.0取值
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
# loss函数定义为平方求平均
loss = tf.reduce_mean(tf.square(y - y_data))
#采用梯度下降,学习率设为0.5
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
sess.run(train)
if step % 20 == 0:
#tf定义的变量都需要sess.run才可见
print(step, sess.run(W), sess.run(b))
# Learns best fit is W: [0.1], b: [0.3]