决策树

算法思想

  • 从数据集中找到一个特征,这个特征在划分数据分类中起决定性作用.为了找到这个特征,就要评估每个特征,找到区分度对好的呢个特征,将数据集分开.
  • 划分数据集之前,之后信息发生的变化成为信息增益.每个特征划分数据获取的信息增益,越大的,表示区分效果越好 信息增益(Information Gain)
  • 熵定义为信息的期望值. 越不确定的事件的信息熵越大,因为一定的事情没有信息量 (地球绕着太阳转)

得了解的信息论基本概念

自信息量:一个事件(消息)本身所包含的信息量,由事件的不确定性决定的。
随机事件Xi发生概率为P(xi),则随机事件的自信息量定义为:

自信息量计算公式

信息熵(Entropy):随机变量自信息量I(xi)的数学期望(平均自信息量),用H(X)表示,即为熵的定义:

信息熵计算公式

动手实践

2票同意,3票不同意

同意的占40%,不同意的占60%,此时信息熵是0.970
将一个同意改为不确定的时候
{yes:2,no:3} -> {yes:1,not sure:1,no:3}
同意的占20%,不确定的占20%,不同意的占60%,此时信息熵是1.370


划分数据集

通过计算信息熵,可以衡量数据的无序程度
现在要计算,通过每个特征值划分后的数据集的信息熵,然后判断那个特征划分后的数据集
选取信息熵最大的特征值,这相当于让剩下是数据更具确定性

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet] # 每一列的值,即一个feature所有的数据
        print featList
        uniqueVals = set(featList)
        print uniqueVals
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet,i,value)
            print "subDataSet : %s" %  subDataSet
            prob = len(subDataSet)/float(len(dataSet))
            print "prob : %f" %  prob
            print "calcShannonEnt: %f" % calcShannonEnt(subDataSet)
            newEntropy += prob * calcShannonEnt(subDataSet)
            print "new entropy : %f" % newEntropy
        infoGain = baseEntropy - newEntropy
        print "infoGain : %f" % infoGain
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

动手实现一遍

原始数据

Paste_Image.png

处理为属性和标签的形式

Paste_Image.png

计算该矩阵对应的基准信息熵(Base Entropy) = 0.97

算法开始

1.选取特征A

Paste_Image.png

2.选取特征B

Paste_Image.png

3.因为IG(A) = 0.42 > IG(B) = 0.17,所以对数据集最具有区分度的特征为第0个特征A.以此为依据构建决策树

Paste_Image.png
决策树最终状态
Paste_Image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容

  •   决策树(Decision Tree)是一种基本的分类与回归方法,其模型呈树状结构,在分类问题中,表示基于特征对...
    殉道者之花火阅读 4,494评论 2 2
  • 先来看个例子一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:女儿:多大年纪了?母亲:26。女儿:长的帅不...
    ColleenKuang阅读 731评论 0 0
  • 一、决策树应用体验 分类   从上面可以看出,决策树对分类具有线性回归无可比拟的优势, 如果对未参与训练的数据集是...
    杨强AT南京阅读 1,241评论 1 3
  • 运行平台:Windows Python版本:Python3.x IDE:pycharm 一、决策树 决策树是什么?...
    ghostdogss阅读 1,852评论 0 1
  • 一、介绍 决策树(Decision Tree)是一个树结构(可以是二叉树或非二叉树),其中每个非叶节点表示一个属性...
    黑羊的皇冠阅读 2,428评论 0 4