重大成果——国产量子计算机

学号:1600030024 姓名:王冠雄

【嵌牛导读】:5月3日,中国科学技术大学教授、中国科学院院士潘建伟在上海宣布,中国科研团队成功构建光量子计算机,首次演示了超越早期经典计算机的量子计算能力。

【嵌牛鼻子】:量子计算机,计算性能,结构原理

【嵌牛提问】:量子计算的性能?这次的计算机与以往有何不同?

【嵌牛正文】:

5月3日,中国科学技术大学教授、中国科学院院士潘建伟在上海宣布,中国科研团队成功构建光量子计算机,首次演示了超越早期经典计算机的量子计算能力。

据潘建伟介绍,这次实验最重要的是实现了两大突破:首先,这是由中国科研团队完成的世界首台超越早期经典计算机的光量子计算机;其次,这也是世界上纠缠数目最多(10个)的超导量子比特处理器。

这两大突破背后有何意义?量子计算机与传统计算机有何不同?以及,在量子计算领域,中国与其他国家相比实力如何?在当天的新闻发布会上,潘建伟教授用15张PPT作了解释。澎湃新闻获得授权转发。

在理解量子计算机之前,我们首先需要知道什么是量子纠缠和量子叠加原理。按照经典计算机的设计原理,科学家们在传统芯片的晶体管中,用0和1的二进制来表示信息。但在量子力学的世界里,依据量子的物理性质,它能够呈现叠加状态,能同时表示0和1。处于叠加态的量子比特能以一种叫做量子纠缠的现象相互联系,简单来说,就是一个量子比特的行为能瞬间影响到另一个量子比特。

依据量子比特的特殊性,著名物理学家理查德·费曼最早提出了量子计算机。按照他当时的设想,如果用量子系统构成的计算机来模拟量子现象,运算时间可大幅度减少。量子计算机的概念从此诞生。

费曼对量子计算机概念的阐述还有个经典的应用场景描述:你被要求5分钟内在国会图书馆某一本书的某页上找到一个大写字母“X”,这几乎是不可能的,因为那里有5000万册书。但是如果你处于5000万个平行现实中,每个现实都可以查看不同的书籍,那么你肯定能在其中某个现实中找到这个“X”。在这个假设中,普通计算机就像是前一种情形中疯子般的那个你,需要在5分钟内找遍尽可能多的书。而量子计算机却能复制出5000万个你,每个只需翻找一本书即可。

正是因为量子计算机有如此“神奇”的作用,除了中国在该领域有研究投入外,美国和欧洲的政府部门、大型科技公司和前沿实验室都对量子计算产生了极大的兴趣。

谷歌、IBM和微软等公司都已发布各自的量子计算机研究计划。毫无疑问,目前谷歌仍是量子计算领域的领头羊。此前,谷歌曾宣布将在今年推出49量子比特的量子计算机。

潘建伟团队的此次实验,使得中国的超导体系量子计算机研究,进入世界一流水平行列。首先,这次的光量子计算机原型机的取样速度比国际同行类似的实验加快至少24000倍;通过和经典算法比较,这也比人类历史上第一台电子管计算机和第一台晶体管计算机运行速度快10倍至100倍。

另外,这次研究团队自主研发了10比特超导量子线路样品,通过发展全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特的纠缠和完整的测量。更进一步的是,研究团队利用超导量子线路演示了求解线性方程组的量子算法,证明了通过量子计算的并行性加速求解线性方程组的可行性。

10个比特超导线路,也让该团队在超导体系打破了之前由谷歌、美国航天航空局和加州大学圣芭芭拉分校创下的9个超导量子比特的操纵记录。

2016年,潘建伟团队首次成功实现“十光子纠缠”。多粒子纠缠操纵作为量子信息处理基本能力的核心指标,近年来一直是国际学界角逐的焦点。操纵的纠缠光子数目越多,量子信息处理能力就会呈指数增长,但同时实验实现的难度也急剧增加。

经过努力,潘建伟教授及其同事陆朝阳、朱晓波等,联合浙江大学王浩华教授研究组,把比特数目扩展到10个,并制备了10比特的纠缠GHZ态,保真度大于66%,据介绍,在目前公开的结果中,这是超导量子比特系统中纠缠的数目最多的。

从最初的3比特,到5比特,到6比特,再到如今的10比特,潘建伟说,此次测试的成功标志着中国在超导量子比特集成系统的设计制备、控制与测量等各方面都打下了坚实的基础。根据计划,潘建伟的研究团队将在今年年底实现大约20个光量子比特的操纵,20个超导量子比特样品的设计、制备和测试,量子计算机的速度将会成指数增长。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容