代码阅读-deformable DETR (三)

这一篇我们来分析一下将 multi-scale deformable attention 取代self-attention的transformer的构造。

首先来看一下编码器部分Encoder

class DeformableTransformerEncoderLayer(nn.Module):
    def __init__(self,
                 d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4):
        super().__init__()

        # self attention
        self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
        # self attention
        src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        # ffn
        src = self.forward_ffn(src)

        return src

实现过程如下图所示。multi-head self-attention使用MSDeformAttn构造,然后两个线性层定义了FFN模块, Norm是nn.LayerNorm, Add表示跨层链接, 中间使用了多层dropout层。
self_attnMSDeformAttn得输入为:

  1. query 每个query的特征,在encoder里是每一个level中每个位置点的特征
  2. reference_points batch_size x query个数 x level个数 x 2 ,每个query每个level的位置点,归一化之后的点,encoder里是每个level的位置点归一化之后的位置
  3. src backbone的输出,可能是多个stage,是cat之后再flatten的结果
  4. spatial_shapes 每个level的featmap尺寸
  5. level_start_index 每个level在flatten的特征向量集上的起始索引
  6. padding_mask 考虑所有level,每个位置是否mask的标志。
Encoder

上面定义的是每一个encoder layer的实现, transformer中的Encoder是多个相同结构的Encode layer的串联。所以Encoder定义如下:

class DeformableTransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)  
        self.num_layers = num_layers  # 堆叠的个数

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        reference_points_list = []
        for lvl, (H_, W_) in enumerate(spatial_shapes):

            ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
                                          torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
        output = src
        reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
        for _, layer in enumerate(self.layers):
            output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)

        return output

这里的_get_clones()函数时结构的深度复制,即参数是不同的。

def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

forward里面即顺序执行的过程,主要要理解的是reference_points的定义。其实就是计算每个level中每个网格点的位置,这里的位置采用的是网格的中心点。这里有一个变量valid_ratios需要解释一下,query的个数是所有的像素位置,包括不同的level, 那么每个query都需要在不同的level上采点,所以需要每个reference_point在每个level上映射后的点,所以这里的valid_ratios在计算时就是公式2里的\phi函数。于是reference_points的size为BatchSize \times \sum_l^LH_lW_l \times L \times 2,总共有\sum_l^LH_lW_l个queries。

接下来是编码器部分Decoder

class DeformableTransformerDecoderLayer(nn.Module):
    def __init__(self, d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4):
        super().__init__()

        # cross attention
        self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None):
        # self attention
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # cross attention
        tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
                               reference_points,
                               src, src_spatial_shapes, level_start_index, src_padding_mask)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt

编码部分如下图所示,每个layer中包含两个部分,即query之间的self-attention,以及query与key之间的cross-attention.
self-attention由nn.MultiheadAttention实现,这里的pos表示的是query之间的位置编码。cross-attention调用的MSDeformAttn, 其输入的query不再是所有的像素位置,而src,src_spatial_shapes依然是所有的level。

decoder

class DeformableTransformerDecoder(nn.Module):
    def __init__(self, decoder_layer, num_layers, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.return_intermediate = return_intermediate
        # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None

    def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios,
                query_pos=None, src_padding_mask=None):
        output = tgt

        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = reference_points[:, :, None] \
                                         * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
            output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask)

            # hack implementation for iterative bounding box refinement
            if self.bbox_embed is not None:
                tmp = self.bbox_embed[lid](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(intermediate_reference_points)

        return output, reference_points

用decoderLayer搭建decoder的过程即顺序执行的过程,每次cross-attention的key和value都来自于相同的量,即encoder的多个level的输出。这里还定义了两个改进的接口,即box迭代细化和两阶段DETR。

Transformer

这部分是最终把Encoder和Decoder组装起来的过程。

class DeformableTransformer(nn.Module):
    def __init__(self, d_model=256, nhead=8,
                 num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
                 activation="relu", return_intermediate_dec=False,
                 num_feature_levels=4, dec_n_points=4,  enc_n_points=4,
                 two_stage=False, two_stage_num_proposals=300):
        super().__init__()

        self.d_model = d_model
        self.nhead = nhead
        self.two_stage = two_stage
        self.two_stage_num_proposals = two_stage_num_proposals

        encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, enc_n_points)
        self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)

        decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, dec_n_points)
        self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec)

        self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))

        if two_stage:
            self.enc_output = nn.Linear(d_model, d_model)
            self.enc_output_norm = nn.LayerNorm(d_model)
            self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
            self.pos_trans_norm = nn.LayerNorm(d_model * 2)
        else:
            self.reference_points = nn.Linear(d_model, 2)
        self._reset_parameters()

这里出现了几个变量two_stage, two_stage_num_proposals, 'level_embed', reference_points以及two_stage的提取proposal过程。

看看其在forward中的作用:

def forward(self, srcs, masks, pos_embeds, query_embed=None):
        assert self.two_stage or query_embed is not None

        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            src = src.flatten(2).transpose(1, 2)        # bs x c x h x w -> bs x c x hw -> bs x hw x c
            mask = mask.flatten(1)                      # bs x hw
            pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs x c x h x w -> bs x c x hw -> bs x hw x c
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # bs x hw x c + 1 x 1 x c, 每一level提供一个可学习的编码
            lvl_pos_embed_flatten.append(lvl_pos_embed)     # 分别flatten之后append,方便encoder调用,即所有的keys
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # bs x num_level x 2

        # encoder
        memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)

        # prepare input for decoder
        bs, _, c = memory.shape
        if self.two_stage:
            output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)

            # hack implementation for two-stage Deformable DETR
            enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)  # 预测输出的score
            enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals  # 编码后的anchor+相对偏差

            topk = self.two_stage_num_proposals
            topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]  # 选择最大的topk的proposal
            topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))  # 选择对应topl score的编码后的框
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()  # 相当于对proposal的微调
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
        else:
            query_embed, tgt = torch.split(query_embed, c, dim=1)       # Lq x d_model
            query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)   # bs x Lq x d_model     每个sample的query相同,参考位置也相同
            tgt = tgt.unsqueeze(0).expand(bs, -1, -1)                   # 初始的query
            reference_points = self.reference_points(query_embed).sigmoid()     # 每个query是学习到不同的参考位置
            init_reference_out = reference_points

        # decoder
        hs, inter_references = self.decoder(tgt, reference_points, memory,
                                            spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten)

        inter_references_out = inter_references
        if self.two_stage:
            return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact
        return hs, init_reference_out, inter_references_out, None, None

可以发现 level_embed始终可学习的对于不同level进行额外位置编码的作用。

不考虑two_stage的情况中query_embedLq x 2d\_model大小的向量组,2d_model的长度包含query的可学习特征以及初始化的pos编码, reference_points对pos编码特征进行线性变换以得到初始可能的reference点。(这里有点值得思考的问题,相当于query_embed中包含了两类,一类是表观特征,一类是位置编码,那么我们是不是可以理解为表观特征作为模板在编码位置临近进行模板匹配呢?这样我们可以直接提供模板特征和侯选位置。)

考虑two_stage的情况,相当于先利用encoder进行proposals的粗选,即更具score筛选topk个候选位置。那么我看一看怎么由encoder提取proposals:

def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
        N_, S_, C_ = memory.shape
        base_scale = 4.0
        proposals = []
        _cur = 0
        for lvl, (H_, W_) in enumerate(spatial_shapes):
            mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
                                            torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)  # H x W x 2 

            scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) # 每个sample的有效尺寸
            grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale  # 归一化
            wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) #  方形的候选框,其实等价于anchor
            proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
            proposals.append(proposal)
            _cur += (H_ * W_)  # 每个level的起始索引
        output_proposals = torch.cat(proposals, 1)  # bs x key_num x 4
        output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)  
        # 筛选有效的proposal,将靠近边界的点舍弃
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
        output_memory = self.enc_output_norm(self.enc_output(output_memory))
        return output_memory, output_proposals

for循环里是对不同level的所有格点创建不同尺寸的anchor框,scale其实是对有效区域的处理,后续对output_proposals的处理是筛选掉边界附近的候选,输出是对应位置的特征和编码后的proposal, 对应位置的特征用于映射proposal的类别score以及校正偏差。值得注意的是proposal并没有直接使用原始坐标,而是进行了log的编码
p = log(\frac{x}{1-x}), 在forward中的two_stage情况提取reference_points是使用sigmoid函数进行了解码,我们假设偏置量为0,可以发现:
y= \frac{1}{1+e^{-p}} = x


以上就是整个transformer的实现过程,不考虑two-stage的情形就是encoder和decoder的调用,而ecoderlayer和decoderlayer主要是deformAttn的调用。
下一篇我们来看整个deformable DETR的实现,即backbone + transformer以及FFN过程, transformer提供了每个query变换后的embedding和学习到的reference_points, FFN则将其转换为bbox和score。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 作者团队:商汤,中科大,港中文来源:arXiv:2010.04159v2代码:https://github.com...
    熙熙江湖阅读 12,676评论 2 6
  • 夜莺2517阅读 127,709评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 6,876评论 1 6
  • 我是一名过去式的高三狗,很可悲,在这三年里我没有恋爱,看着同龄的小伙伴们一对儿一对儿的,我的心不好受。怎么说呢,高...
    小娘纸阅读 3,375评论 4 7
  • 那一年,我选择了独立远行,火车带着我在前进的轨道上爬行了超过23个小时; 那一年,我走过泥泞的柏油路,在那个远离故...
    木芽阅读 1,629评论 4 5