成对数据的统计分析

第1节 成对数据的统计分析

一、变量间的相关关系
1、两个变量有关系,但又没有确切到可由其中一个区精确地决定另一个的程度,这种关系称为相关关系;
2、如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关;
3、一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关;注:如果散点落在某条曲线附近,而不是落在一条直线附近,说明这两个变量具有相关性,但不是线性相关;如果散点落在一条折线附近,这两个变量也具有相关性,但它们既不是正相关,也不是负相关;
4、一般地,如果两个变量具有相关性,但不是线性相关,那么我们就称这两个变量非线性相关或曲线相关。

二、样本相关系数:用来衡量两个变量的线性相关关系
1、定义 r=
我们称r为变量x和变量y的样本相关系数

2、特征
(1)当r>0时,称成对数据正相关,这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大
(2)当r<0时,称成对数据负相关,这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小
(3)样本相关系数r的取值范围为[-1,1]
(4)样本相关系数r的绝对值大小可以反映成对数据之间线性相关的程度:
当|r|越接近1时,成对数据的线性相关程度越强
当|r|越接近0时,成对数据的线性相关程度越弱

第2节 一元线性回归模型及其应用
一、一元线性回归模型
x与y的关系可以表示为:
我们称上式为y关于x的一元线性回归模型,其中,y称为因变量或响应变量,x称为自变量或解释变量;a和b为模型的未知参数,a称为截距参数,b称为斜率参数;e是y与bx+a之间的随机误差

二、一元线性回归模型参数的最小二乘估计
1、经验回归方程
我们将:

关于x的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线。这种求经验回归方程的方法叫做最小二乘法,求得的b,a叫做b,a的最小二乘估计。
注:由于a=y-bx,即(x,y)满足经验回归方程y=bx+a,所以经验回归直线必定过样本点的中心(x,y)

2、残差分析:
对于响应变量y,通过观测得到的数据称为观测值,通过经验回归方程得到的y称为预测值,观测值减去预测值称为残差,残差随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析。注:残差可以是正数,也可以使负数,也可以是0
注:
(1)如果在残差的散点图中,残差比较均匀地分布在横轴的两边,说明残差比较符合一元线性回归模型的假定,是均值为0,方差为的随机变量的观测值
(2)可以通过比较残差的平方和来比较两个模型的效果,残差平方和越小,模型的拟合效果越好;残差平方和越大,模型的拟合效果越差。
也可以用R的平方来比较两个模型的拟合效果,R的平方计算公式为:
R的平方越大,模型的拟合效果越好,R的平方越小,模型的拟合效果越差。

第三节 列联表与独立性检验
一、分类变量
我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量,分类变量的取值可以用实数表示。

二、22列联表
在实践中,由于保存原始数据的成本较高,人们经常按研究问题的需要,将数据分类统计,并做成表格加以保存,我们将下表表示的数据统计表称为分类变量x和y的抽样数据的2
2列联表

2*2列联表给出了成对分类变量数据的交叉分类频数

三、独立性检验
构造随机变量: 利用 的取值判断分类变量x和y是否独立的方法称为x 的独立性检验,读作“卡方独立性检验“简称独立性检验””

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,230评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,261评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,089评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,542评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,542评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,544评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,922评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,578评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,816评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,576评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,658评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,359评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,920评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,859评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,381评论 2 342

推荐阅读更多精彩内容