R-dplyr 数据转换

filter()
arrange()
select()
mutate()
summarize()
dplyr函数不会修改输入,保存结果需要进行赋值

1.filter() 筛选行

filter(data, expr1, expr2..., preserve = F)
data: 数据框
expr: 用于筛选数据框的表达式
filter()函数自动排除NA值
e.g. nycflights13包中的flights数据为例

> nycflights13::flights
# A tibble: 336,776 x 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>     <dbl> <chr>  
 1  2013     1     1      517            515         2      830            819        11 UA     
 2  2013     1     1      533            529         4      850            830        20 UA     
 3  2013     1     1      542            540         2      923            850        33 AA     
 4  2013     1     1      544            545        -1     1004           1022       -18 B6     
 5  2013     1     1      554            600        -6      812            837       -25 DL     
 6  2013     1     1      554            558        -4      740            728        12 UA     
 7  2013     1     1      555            600        -5      913            854        19 B6     
 8  2013     1     1      557            600        -3      709            723       -14 EV     
 9  2013     1     1      557            600        -3      838            846        -8 B6     
10  2013     1     1      558            600        -2      753            745         8 AA     
# ... with 336,766 more rows, and 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
#   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

> filter(flights, month == 1 | day == 1)
# A tibble: 37,198 x 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>     <dbl> <chr>  
 1  2013     1     1      517            515         2      830            819        11 UA     
 2  2013     1     1      533            529         4      850            830        20 UA     
 3  2013     1     1      542            540         2      923            850        33 AA     
 4  2013     1     1      544            545        -1     1004           1022       -18 B6     
 5  2013     1     1      554            600        -6      812            837       -25 DL     
 6  2013     1     1      554            558        -4      740            728        12 UA     
 7  2013     1     1      555            600        -5      913            854        19 B6     
 8  2013     1     1      557            600        -3      709            723       -14 EV     
 9  2013     1     1      557            600        -3      838            846        -8 B6     
10  2013     1     1      558            600        -2      753            745         8 AA     
# ... with 37,188 more rows, and 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
#   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

# 找出UA,AA,DL运行的航班
> filter(flights, carrier %in% c('UA','AA','DL'))

#找出延误至少1小时,但飞行过程弥补回30分钟的航班
> filter(flights, dep_delay >= 60, dep_delay > arr_delay + 30)

#0点到6点出发的航班
> filter(flights, dep_time >= 0, dep_time <= 600)

between(x, arg1, arg2) 函数可用用于简化 (x >= arg1 & x <= arg2) 计算

filter(flights, dep_time >= 0, dep_time <= 600) 等价于 filter(flights, between(dep_time, 0 , 600))

2.arrange() 排列行

改变行的顺序
arrange(data, col/expr ....)
data: 进行排序的数据框
col: 用于排序的列
expr: 表达式
默认按照升序进行排列,desc() 函数可进行降序排列。默认将缺失值NA排在最后。
e.g.

# 寻找延误时间最长的航班
arrange(flights, desc(dep_delay))

#将缺失值排在最前面
arrange(flights, desc(is.na(dep_delay)))

3. select() 选择列

选择特定的列
select(data, var/expr)
e.g.

#选择year,month,day 三列
select(flights, year, month, day)
#选择 year到day之间的所有列
select(flights, year:day)
#选择除去 year到day 之间的所有列
select(flights, -(year:day))

辅助函数:
start_with(" ") 匹配开头字段格式
ends_with(" ") 匹配末尾字段格式
contains(" ") 匹配包含字段格式,不区分大小写
one_of(var) 匹配包含变量var的列
matches(" ") 匹配正则表达式

  • 重命名变量:
    rename()
rename(flights, tail_num = tailnum)
  • 将所选变量移至开头:
    select() 结合 everything()
# 选择 time_hour, aittime 变量并移至开头
select(flights, time_hour, airtime, everything())

4. mutate()添加列

mutate(data, colname = expr)
添加新列,且新列是现有列的函数

mutate(flights,
       gain = arr_delay - depdalay,
       speed = distance / airtime * 60
       )

若只保留新列,可用 transmute() 函数

5. summarize() 函数

将数据框进行分析后折叠成一行
summarize(data, var=func(...))
summarize() 函数常与 group_by() 函数联用。group_by() 函数可将分析单位从整个数据集改为单个分组。
使用 ungroup() 函数取消分组。
e.g.

> by_day <- group_by(flights, year,month,day)
> summarize(by_day, delay = mean(dep_delay, na.rm=TRUE))
# A tibble: 365 x 4
# Groups:   year, month [12]
    year month   day delay
   <int> <int> <int> <dbl>
 1  2013     1     1 11.5 
 2  2013     1     2 13.9 
 3  2013     1     3 11.0 
 4  2013     1     4  8.95
 5  2013     1     5  5.73
 6  2013     1     6  7.15
 7  2013     1     7  5.42
 8  2013     1     8  2.55
 9  2013     1     9  2.28
10  2013     1    10  2.84
# ... with 355 more rows

# 区别于select()函数,group_by()在保留数据集所有数据的基础上对单个分组进行分析
> by.day <- select(flights, year,month,day)
> summarize(by.day, delay = mean(dep_delay, na.rm=TRUE))
Error in mean(dep_delay, na.rm = TRUE) : 找不到对象'dep_delay'

可使用管道符 %>% 减少变量命名,增强代码可读性
e.g.

# delay <- flights %>% group_by(year, month, day) %>% summarize(mean(dep_delay, na.rm = TRUE))  等同于
# > by_day <- group_by(flights, year,month,day)
# > summarize(by_day, delay = mean(dep_delay, na.rm=TRUE))

> delay <- flights %>% group_by(year, month, day) %>% summarize(mean(dep_delay, na.rm = TRUE)) 
> delay
# A tibble: 365 x 4
# Groups:   year, month [12]
    year month   day `mean(dep_delay, na.rm = TRUE)`
   <int> <int> <int>                           <dbl>
 1  2013     1     1                           11.5 
 2  2013     1     2                           13.9 
 3  2013     1     3                           11.0 
 4  2013     1     4                            8.95
 5  2013     1     5                            5.73
 6  2013     1     6                            7.15
 7  2013     1     7                            5.42
 8  2013     1     8                            2.55
 9  2013     1     9                            2.28
10  2013     1    10                            2.84
  • 摘要函数中,聚合函数与逻辑筛选可进行组合使用
not_cacelled %>%
  group_by(year, month, day) %>%
  summarize(
    # 平均延误时间
    avg_delay1 = mean(arr_delay),
    # 平均正延误时间
    avg_delay2 = mean(arr_delay[arr_delay > 0])
  )
  • 常用的摘要函数:
    位置度量:mean(x) median(x)
    分散程度度量:sd(x)标准差; IQR(x)四分位距; mad(x)绝对中位差
    秩的度量:min(x) quantile(x, 0.25)x位于25%-75%之间的值; max(x)
    位度量:first(x) nth(x) last(x)
    计数:n()不需要任何参数,sum(! is.na(x))可计算非缺失量的数值,n_distinct(x)可计算唯一值
    count(x)用于只需要对x变量进行计数,不与 summarize() 联用
    逻辑值计数和比例:sum(x > 10) mean(y == 0) TRUE返回1, FALSE返回0

e.g.

> # 找出准点记录(平均延误时间)最差的航班(尾号)
> flights %>% group_by(tailnum) %>%
+   summarise(avrg_delay = mean(dep_delay, na.rm = TRUE)) %>%
+   arrange(desc(avrg_delay))
# A tibble: 4,044 x 2
   tailnum avrg_delay
   <chr>        <dbl>
 1 N844MH         297
 2 N922EV         274
 3 N587NW         272
 4 N911DA         268
 5 N851NW         233
 6 N654UA         227
 7 N928DN         203
 8 N7715E         186
 9 N665MQ         177
10 N136DL         165
# … with 4,034 more rows


> # 航班起飞时间与延误时间的关系
> flights %>% group_by(hour) %>%
+   summarize(avrg_delay = mean(dep_delay, na.rm = TRUE)) %>%
+   ggplot(aes(x = hour, y = avrg_delay)) +
+   geom_point() +
+   geom_smooth(method=lm, formula = y~poly(x,2),se=F) +
+   labs(x = 'dep_time', y = 'avrg_delay')
Warning messages:
1: Removed 1 rows containing non-finite values (stat_smooth). 
2: Removed 1 rows containing missing values (geom_point). 
起飞时间与延误时间关系
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342