二、从疝气病症状预测病马的死亡率 1、实战背景 本次实战内容,将使用Logistic回归来预测患疝气病的马的存活问题。原始数据集下载地址:数据集下载 这里的数据包含了368个...
二、从疝气病症状预测病马的死亡率 1、实战背景 本次实战内容,将使用Logistic回归来预测患疝气病的马的存活问题。原始数据集下载地址:数据集下载 这里的数据包含了368个...
一、改进的随机梯度上升算法 梯度上升算法在每次更新回归系数(最优参数)时,都需要遍历整个数据集。可以看一下我们之前写的梯度上升算法: def gradAscent(dataM...
三、Python3实战 1、数据准备 数据集已经为大家准备好,下载地址:数据集下载[https://github.com/Jack-Cherish/Machine-Learn...
一、前言 本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮...
三、动手实战 说了这么多,没点实践编程怎么行? 以在线社区留言为例。为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的...
一、前言 朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问...
六、Sklearn之使用决策树预测隐形眼睛类型 1、实战背景 进入本文的正题:眼科医生是如何判断患者需要佩戴隐形眼镜的类型的?一旦理解了决策树的工作原理,我们甚至也可以帮助人...
四、使用决策树执行分类 依靠训练数据构造了决策树之后,我们可以将它用于实际数据的分类。在执行数据分类时,需要决策树以及用于构造树的标签向量。然后,程序比较测试数据与决策树上的...
三、决策树可视化 这里代码都是关于Matplotlib的,如果对于Matplotlib不了解的,可以先学习下,Matplotlib的内容这里就不再累述。可视化需要用到的函数:...
一、前言 上篇文章机器学习实战教程(二):决策树基础篇[https://www.mlxs.top/portal.php?mod=view&aid=114]讲述了机器学习决策树...
一、决策树 决策树是什么?决策树(decision tree)是一种基本的分类与回归方法。举个通俗易懂的例子,如下图所示的流程图就是一个决策树,长方形代表判断模块(decis...
5、测试算法:验证分类器 机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分...
一、简单k-近邻算法 本文将从k-近邻(kNN)算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此...
关联分析的基本概念 关联分析(Association Analysis):在大规模数据集中寻找有趣的关系。 频繁项集(Frequent Item Sets):经常出现在一块的...
在本文中,将探讨如何可视化卷积神经网络(CNN),该网络在计算机视觉中使用最为广泛。首先了解CNN模型可视化的重要性,其次介绍可视化的几种方法,同时以一个用例帮助读者更好地理...
想象一下,你的任务是预测下一部iPhone的价格,并提供了历史数据。这包括季度销售、月度支出,以及苹果资产负债表上的一大堆东西。作为一个数据科学家,你会把这个问题归类为什么?...
时间是决定企业兴衰的最关键因素。这就是为什么我们看到商店和电子商务平台的销售与节日一致。这些企业分析多年的消费数据,以了解打开大门的最佳时间,并看到消费支出的增加。 但是,作...
以下应用有什么共同点:预测未来三个月的一个家庭的电力消耗;估计在一定时期内道路的交通量;以及预测一个股票在纽约证券交易所上交易的价格。 以上都涉及时间序列数据的概念!如果没有...
做一个这样有趣的小项目并不复杂,只需一点可视化技巧,100余行Python代码和程序库Tkinter,最后我们就能达到下面这个效果: 学完本教程后,你也能做出这样的烟花秀。 ...
Seaborn概论 Seaborn为Matplotlib提供了一个高级接口,它是一个功能强大但有时笨拙的Python可视化库。 在Seaborn的官方网站上,他们声明: 如果...