概述 优点:泛化错误率低,计算开销不大,结果易解释。 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二分类问题。 适用数据类型:数值型和标称型 概念解释 ...
IP属地:云南
概述 优点:泛化错误率低,计算开销不大,结果易解释。 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二分类问题。 适用数据类型:数值型和标称型 概念解释 ...
1 SVM原理 SVM是一种二分类模型。它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器。(间隔最大化是它的独特之处),通过该超平面实现对未知样本集的分类。 ...
github代码地址:https://github.com/BecauseY/optimization-algorithm 算法介绍 PSO是粒子群优化算法(——Partic...