CL两个塔是同一个item做两次数据增强,论文里数据增强是同时做了mask与dropout,也可以选择其它增强方式。
SSL, 20, Google自监督学习推荐算法Self-supervised Learning for Large-scale Item Recommendations 1. Motivation 在一些item特别多的...
CL两个塔是同一个item做两次数据增强,论文里数据增强是同时做了mask与dropout,也可以选择其它增强方式。
SSL, 20, Google自监督学习推荐算法Self-supervised Learning for Large-scale Item Recommendations 1. Motivation 在一些item特别多的...
Roberta: A robustly optimized bert pretraining approachCitation: 1669 (2021-09-09) 1. M...
Transformer-xl: Attentive language models beyond a fixed-length contextCitation: 1326 (...
Bert: Pre-training of deep bidirectional transformers for language understanding 1. Mot...
Attention Is All You NeedCitation: 26532 (2021-09-04) 1. Motivation 重读经典,一个重要的起点。 在作者写作...
Multi-interest network with dynamic routing for recommendation at TmallCitation: 52 (20...
Rapid learning or feature reuse? towards understanding the effectiveness of maml. Citat...
Meta-Learning in Neural Networks: A SurveyCitation: 236 (2021-08-29) 1. Proposed Taxono...
Meta-Learning in Neural Networks: A SurveyCitation: 236 (2021-08-29) 1. Motivation 一个典型...
DRN: A Deep Reinforcement Learning Framework for News Recommendation Citation: 232 (202...
Relation-aware Meta-learning for Market Segment Demand Prediction with Limited Records ...
Exploring Simple Siamese Representation Learning 1. Motivation Kaiming He[1]大神的又一力作,证明在...
SERank: Optimize Sequencewise Learning to Rank Using Squeeze-and-Excitation Network 1. ...
Deep Interest Network for Click-Through Rate Prediction 1. Motivation 本文是阿里妈妈发表在KDD18上的...
1. 期望 定义:假设离散型随机变量的分布律为: 如果级数 绝对收敛,则称级数的和为随机变量的数学期望,记为。即, 设连续型随机变量的概率密度为,如果积分 绝对收敛,则称积分...
One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Predict...
Meta-Learned Specific Scenario Interest Network for User Preference Prediction 1. Motiv...
R-Drop: Regularized Dropout for Neural Networks 1. Motivation 想法很直接,对模型做两次Dropout得到两个不同...