AM-GCN: Adaptive Multi-channel Graph Convolutional Networks 文中提出在复杂网络中,现有的GCN方法融合节点属性信息...
AM-GCN: Adaptive Multi-channel Graph Convolutional Networks 文中提出在复杂网络中,现有的GCN方法融合节点属性信息...
Deep Anomaly Detection on Attributed Networks 提出了DOMINANT(Deep Anomaly Detection on Att...
Time Series Shapelets: A New Primitive for Data Mining 对于时序数据,提出了一种新的特征,名为shapelet。shap...
Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction 本文是滴滴发在KDD202...
GPT-GNN: Generative Pre-Training of Graph Neural Networks 文中指出训练GNN需要大量和任务对应的标注数据,这在很多时...
Deep Neural Networks for YouTube Recommendations 文中把整个推荐过程分成两个步骤:•deep candidate genera...
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 目...
Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction 目标...
A Convolutional Click Prediction Model 目标:CTR预估 Convolution Layer 对于有n个元素的输入,先做embeddin...
Deep Interest Evolution Network for Click-Through Rate Prediction 目标:CTR预估文中指出以前的模型忽略了用...
Deep Interest Network for Click-Through Rate Prediction 本文指出,在基于embedding和MLP的模型中,用户的各种...
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Att...
Neural Factorization Machines for Sparse Predictive Analytics 文中提到了对于稀疏特征交互的处理。FM以线性的方式...
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 目标:CTR预估文中指出以前的...
Deep Learning over Multi-field Categorical Data – A Case Study on User 目标:CTR预估。本文提出了FN...
Deep & Cross Network for Ad Click Predictions 目标:CTR预估。本文提出了Deep & Cross Network(DCN)能够...
Wide & Deep Learning for Recommender Systems 文中指出推荐系统的一个挑战是同时实现memorization和generalizat...
Product-based Neural Networks for User Response Prediction 目标:CTR预估。文中指出LR,GBDT,FM虽然在工业...
Neural Collaborative Filtering 文中指出虽然之前有一些工作使用deep learning来解决推荐问题,但这些工作基本上使用deep learn...
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features 文中开篇讲...