@Buccer 强,可以试试
基于Python的信用评分卡模型分析(一)信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通...
上一篇网贷平台Prosper2005~2014贷款数据分析(一)中,主要重要变量的介绍、几个重要变量的转换、数据的探索性分析。接下来,主要介绍数据缺失处理、模型分析和预测。 ...
一、摘要 本文详述了如何通过数据预览,基本数据分析、探索式数据分析,缺失数据填补等方法,实现对kaggle上Prosper借贷平台贷款者还款与否这一分类问题如何进行数据分析的...
@Buccer 有些变量可以直接通过最优分箱算法离散化,有些变量通过算法会报错。
基于Python的信用评分卡模型分析(一)信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通...
下一篇文章的分享链接里面,有云盘的链接,里面分享了数据
基于Python的信用评分卡模型分析(一)信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通...
信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通...
“房价”,与其他商品的价格一样,是需求与供应在现实世界中的投影。每个人购房时,都会基于不同的需求进行考虑。只不过作为不动产,房屋这一商品背后的供需关系略有特殊: 在我们生活的...
前段时间和几个朋友讨论过关于买房的问题,主要讨论的就是该不该买、买不买得起和去哪买得问题。于是就产生了一个想法,分析一下深圳的房价情况。 数据来源: 房天下:http://s...
为了获取拉勾网的招聘信息,对数据分析岗位的基本信息进行爬取。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉勾网上的岗位信息非常完整、整洁,极少存在信息的...
项目简介 自学数据分析的相关技能有一段时间,到现在也算学到不少内容,接下来打算慢慢找工作。在这之前打算将之前学的东西,练习一遍,慢慢增加熟悉度。本项主要打算复习,urllib...